Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37563510

RESUMO

The Northeast part of India is experiencing an increase in infrastructure projects as well as landslides. This study aims to prepare the landslide susceptibility map of Tamenglong and Senapati districts, Manipur, India, and evaluates the state of landslide susceptibility along the Imphal-Jiribam railway corridor. Efficient statistical methods such as frequency ratio (FR), information value (IoV), weight of evidence (WoE), and weighted linear combination (WLC) were used in model preparation. A total of 322 landslide points were randomly divided into training (70%) and testing (30%) datasets. Nine causative factors were utilized for landslide susceptibility mapping (LSM). The importance of which was obtained using the information gain (IG) method. FR, IoV, WoE, and WLC were used to prepare the LSM using the training datasets and nine causative factors. Moreover, the accuracy and consistency were evaluated using AUC-ROC, precision, recall, overall accuracy (OA), balanced accuracy (BA), and F-score. The validation results showed that all methods performed well with the highest AUC and precision values of 0.913 and 0.95, respectively, for the IoV method, while the WLC method had the highest OA, BA, and F-score values of 0.808, 0.81, and 0.812, respectively. Finally, the results from LSM were used to evaluate the state of landslide susceptibility along the Imphal-Jiribam railway corridor. The results showed that 34% of the areas had high and very high susceptibility, while 40% were under less and significantly less susceptibility. The Tupul landslide area lay in medium susceptibility where the disastrous landslide occurred on 30 June 2022. Susceptibility values around the Noney and Khongsag railway station ranged from high to very high susceptibility. Thus, the study manifests the need for LSM preparation in rapidly constructing areas, which in turn will help the policymakers and planners for adopting strategies to minimize losses caused due to landslides.

2.
J Environ Manage ; 298: 113413, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352482

RESUMO

The Sutlej River basin of the western Himalaya (study area), owing to its unique geographical disposition, receives precipitation from both the Indian summer monsoon (ISM) and the Westerlies. The characteristic timing and intensity of the ISM and Westerlies, leaves a distinct footprint on the sediment load of the River. Analysis with the last forty years data, shows an increasing trend for temperature. While for precipitation during the same period, the Spiti watershed on the west has highest monthly accumulated precipitation with long term declining trend, in contrast to the other areas where an increasing trend has been observed. Thus, to probe the hydrological variability and the seasonal attributes, governed by the Westerlies and ISM in the study area, we analyzed precipitation, temperature, snow cover area (in %), discharge, suspended sediment concentration (SSC) and suspended sediment load (SSL) for the period 2004 - 2008. To accomplish the task, we used the available data of five hydrological stations located in the study area. Inter-annual shift in peak discharge during the monsoon period is controlled by the variation in precipitation, snow melt, glacier melt and temperature. Besides seasonal variability has been observed in generation of the sediments and its delivery to the river. Our analysis indicates, dominance of the Westerlies footprints in the hydrological parameters of the Spiti region, towards western part of the study area. While, it is observed that the hydrology of the Khab towards eastern part of the study area shows dominance of ISM. Further downstream, the hydrology of Nathpa station also shows dominance of ISM. It also emerged out that the snowmelt contribution to the River flow is mostly during the initial part, at the onset of the monsoon, while for rest and major part of the summer monsoon season, the River flow is augmented by the precipitation, glacial melt and some snow melt. We observed, that the SSC increases exponentially in response to increase in temperature and correlates positively with River discharge. The average daily SSL in the summer monsoon is many times more than that in the winter monsoon. The downstream decrease in steepness of the sediment rating curve is attributed to either a change in the River-sediment dynamics or on account of the anthropogenic forcing. The top 1% of the extreme summer monsoon events (only 4 events) in our study area contribute up to 45% of SSL to the total sediment load budget. It has also been observed that the River-sediment dynamics in the upstream catchments are more vulnerable and sensitive to the extreme events in comparison to the downstream catchments. The present study for the first time gives a holistic insight in to the complex dynamics of the hydrological processes operational in the study area. The research findings would be crucial for managing the water resources of the region and the linked water and food security.


Assuntos
Mudança Climática , Água , Monitoramento Ambiental , Hidrologia , Rios , Neve
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...